VERTICAL CURVE EQUATIONS STANDARDS #### LEGEND ### **EQUATIONS** $g_1 \& g_2 =$ Intersecting gradients in % A =Algebraic difference in $A = (\pm g_2) - (\pm g_1)$ gradients L =Length of vertical curve in stations AL L = Length of vertical curve in stations $B.V.C. = Beginning of Vertical Curve <math>h = \frac{Al}{8}$ E.V.C. = End of Vertical Curve V.P.I. = Vertical Point of Intersection t =Horizontal distance to any point on the curve from B.V.C. or E.V.C. in stations $e = \frac{4ht^2}{L^2}$ P == Horizontal distance to any point on the curve from the V.P.I. in stations h = Vertical distance from point of intersection to the curve V.P.I. in feet e = Vertical distance at any point on the curve $e = Kt^2$ to the tangent grade in feet K = A constant for any particular curve = $\frac{A}{2L}$ $e = \frac{At}{2L}$ L = Length of a vertical curve which will pass through a given point = $2(AP + 2e + 2\sqrt{APe + e^2})$ A #### SLIDE-RULE METHOD - Place algebraic difference in gradient (a) on the B scale opposite 2 times the length of the vertical curve (2L) on the A scale. - Set the hairline of the indicator over 1/2L on the D scale. 1/2L squared will then be under the hairline on the A scale and H will appear on the B scale. - Without moving the slide, move the indicator to any distance t on the D scale and the correction will appear on the B scale under the hairline. #### ALTERNATE SLIDE RULE METHOD Compute the value for "h" and place on the A or square scale of the slide rule. Opposite this value on the A scale set ½ of the value for "L" on the C scale. Any value for "e" can be obtained by sliding the indicator hairline to the desired distance from the beginning of curve BVC or End of curve EVC on the C scale and reading the correction to 3 significant digits on the A scale. Percent of Grade at any distance from B.V.C. $$% Grade = g_i - \frac{At}{L}$$ Distance from B.V.C. to a 0.0% Grade Point. $$t = \frac{(g_1)L}{A}$$ # HIGH POINT OF A SUMMIT CURVE OR LOW POINT OF A SAG CURVE # HIGH POINT OF A SUMMIT CURVE OR LOW POINT OF A SAG CURVE (Cont.) #### LEGEND **EQUATIONS** g₁ = Approach gradient in % A = Algebraic difference in gradients L = Length of vertical curve stations $X = g_1 \left\{ \frac{L}{A} \right\}$ B.V.C. = Beginning of Vertical Curve V.P.I. = Vertical Point of Intersection E.V.C. = End of Vertical Curve X = Distance from the B.V.C. to the low or high point in stations. ## EXAMPLE FOR A SAG CURVE Given: $$g_1 = -3.00\%$$, $g_2 = +2.00\%$, $L = 4.00$, $A = 5.00$ Required: X and e Solution: $$X=3.0\left\{\begin{array}{c} 4.0 \\ \overline{5} \end{array} ight\}=2.4 ext{ stations}$$ #### NONSYMMETRICAL CURVES #### LEGEND ## **EQUATIONS** g, & g2 = Intersecting gradients in % A = Algebraic difference in gradients $1_1 = \text{Length of } \frac{1}{2} \text{ of first vertical curve } h = \frac{1_1 - 1_2}{2(1_1 + 1_2)} A$ 12 = Length of 1/2 of second vertical curve in stations L = Length of vertical curve in stations $= 1_1 + 1_2$ B.V.C. = Beginning of Vertical Curve V.P.I. = Vertical Point of Intersection $e_1 = h \left\{ \frac{t_1}{1_1} \right\}^2$ E.V.C. = End of Vertical Curve t_i = Horizontal distance to any point on the curve from B.V.C. to V.P.I. in stations $e_z = h \left\{ \frac{t_2}{1_2} \right\}^2$ t_e = Horizontal distance to any point on the curve from E.V.C. to V.P.I. in stations e_i = Vertical distance at any point on the curve from B.V.C. to V.P.I. in feet e₂ = Vertical distance at any point on the curve from E.V.C. to V.P.I. in feet h = Vertical distance from point of intersection to the curve (V.P.I.) in feet #### NONSYMMETRICAL CURVES (Cont.) #### EXAMPLE Given: $$g_1 = +3.00\%$$, $g_2 = -2.00\%$, $l_1 = 1.50$, $l_2 = 2.50$, $t_1 = 0.50$, $l_2 = 1.00$ #### Required: h, e1, e2 Solution: $$\begin{split} h &= \frac{1.50(2.50)}{2(1.50 + 2.50)} \left\{ (+3.00) - (-2.00) \right\} \\ &= \frac{3.75}{2(4.00)} (+5.00) = \\ e_1 &= 2.34 \left\{ \frac{0.50}{1.50} \right\}^2 = 2.34 \; (.3333)^2 = 2.34 \; (.1111) = 0.26 \; \mathrm{ft}. \\ e_2 &= 2.34 \; \left\{ \frac{1.00}{2.50} \right\}^2 = 2.34 \; (.40)^2 = 2.34 \; (.16) = 0.37 \; \mathrm{ft}. \end{split}$$ #### DETERMINING INTERSECTION OF GRADES Equation: $MP^1 = \frac{100 \times MN}{A}$ Legend: A = Algebraic difference in gradients = $(\pm g_1)$ - $(\pm g_2)$ M = Known station MN = Difference in elevation in feet between elevation of M on true gradient and on opposite gradient produced MP¹ = Horizontal distance in feet from M to point of intersection of gradients V.P.I. = Vertical point of intersection # DETERMINATION OF DISTANCE FROM FINISHED SHOULDER TO SUBGRADE SHOULDER AND SLOPE EQUIVALENTS Equation: $X = \frac{100B}{A}$ $\mathbf{A} = \mathbf{Algebraic}$ difference in percent between shoulder slope and subgrade slope B = Depth of surfacing at finished shoulder X = Distance from finished shoulder to subgrade shoulder | SHOULDER | EQUIVALENT | EQUIVALENT | |---|--|---| | SLOPE | RATE OF GRADE | VERTICAL ANGLE | | 1.5 :1
1.75:1
2 :1
2.5 :1
3 :1
4 :1
5 :1
6 :1
8 :1
10 :1 | 66.67% 57.14% 50.00% 40.00% 33.33% 25.00% 20.00% 16.67% 12.50% | 33° 41.4′
29° 44.7′
26° 33.9′
21° 48.1′
18° 26.1′
14° 02.2′
11° 18.6′
9° 27.7′
7° 07.5′
5° 42.6′ | | SUBGRADE | EQUIVALENT | EQUIVALENT | | SLOPE | RATE OF GRADE | VERTICAL ANGLE | | .02′ /1 | 2.00% | 1° 08.7' | | .025′/1 | 2.50% | 1° 25.9' | | .03′ /1 | 3.00% | 1° 43.1' | | .035′/1 | 3.50% | 2° 00.3' | | .04′ /1 | 4.00% | 2° 17.4' | | .05′ /1 | 5.00% | 2° 51.7' | ## PILE DRIVING FORMULAS | For Gravity Hammers | $P = \frac{2WH}{S+1.0}$ | |--|-------------------------| | For Single Acting Steam or
Air Hammer | $P = \frac{2WH}{S+0.1}$ | | For Double Acting Steam or
Air Hammer | 2H (W+A _p) | | m riammer | $F = {S+0.1}$ | - WHERE P = Safe Bearing Power in pounds. - W = Weight of striking part of hammer in pounds. (For drop hammers this weight should not be less than 3,000 lbs. for piling less than 50 feet in length, nor less than 4,000 lbs. for piling longer than 50 feet in length.) - H = Drop of hammer or stroke of ram, in feet. (For wooden piling this max. height shall be 10 feet.) - A = Area of Piston in Square Inches. - p = Steam pressure in pounds per square inch at the hammer. - S = The average penetration in inches per blow for the last 5 - 10 blows for gravity hammers or the last 10 - 20 blows for steam or air hammers. The above formulas are applicable only when: - (a) The hammer has a free fall. - (b) The head of the pile is free from broomed or crushed wood fiber. - (c) The penetration is at a reasonably quick and uniform rate. - (d) There is no sensible bounce after the blow. Twice the height of the bounce shall be deducted from "H" to determine its true value in the formula.